Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions

نویسندگان

  • Etienne Jourdier
  • Céline Cohen
  • Laurent Poughon
  • Christian Larroche
  • Frédéric Monot
  • Fadhel Ben Chaabane
چکیده

BACKGROUND On-site cellulase production using locally available lignocellulosic biomass (LCB) is essential for cost-effective production of 2nd-generation biofuels. Cellulolytic enzymes (cellulases and hemicellulases) must be produced in fed-batch mode in order to obtain high productivity and yield. To date, the impact of the sugar composition of LCB hydrolysates on cellulolytic enzyme secretion has not been thoroughly investigated in industrial conditions. RESULTS The effect of sugar mixtures (glucose, xylose, inducer) on the secretion of cellulolytic enzymes by a glucose-derepressed and cellulase-hyperproducing mutant strain of Trichoderma reesei (strain CL847) was studied using a small-scale protocol representative of the industrial conditions. Since production of cellulolytic enzymes is inducible by either lactose or cellobiose, two parallel mixture designs were performed separately. No significant difference between inducers was observed on cellulase secretion performance, probably because a common induction mechanism occurred under carbon flux limitation. The characteristics of the enzymatic cocktails did not correlate with productivity, but instead were rather dependent on the substrate composition. Increasing xylose content in the feed had the strongest impact. It decreased by 2-fold cellulase, endoglucanase, and cellobiohydrolase activities and by 4-fold β-glucosidase activity. In contrast, xylanase activity was increased 6-fold. Accordingly, simultaneous high β-glucosidase and xylanase activities in the enzymatic cocktails seemed to be incompatible. The variations in enzymatic activity were modelled and validated with four fed-batch cultures performed in bioreactors. The overall enzyme production was maintained at its highest level when substituting up to 75% of the inducer with non-inducing sugars. CONCLUSIONS The sugar substrate composition strongly influenced the composition of the cellulolytic cocktail secreted by T. reesei in fed-batch mode. Modelling can be used to predict cellulolytic activity based on the sugar composition of the culture-feeding solution, or to fine tune the substrate composition in order to produce a desired enzymatic cocktail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellulase Production by Trichoderma reesei using Sugar Beet Pulp

Cellulase production by the fungus Trichoderma reesei was studied using sugar beet pulp (SBP) as a substrate. The subculture medium was a salt solution consisting of KH2PO4, CaCl2, etc. Fungal cells were sub-cultured in an orbital shaker (180 rpm) at 30°C for 1-2 generations (two days for each generation) and were then used as an inoculum. Exponential cells were inoculated into a medium contain...

متن کامل

Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose

BACKGROUND The induction of cellulase production by insoluble carbon source cellulose was a common and efficient strategy, but has some drawbacks, such as difficult fermentation operation, substantial cellulase loss, long fermentation time, and high energy-consumption, resulting in high cost of cellulase production in industry. These drawbacks can be overcome if soluble carbon sources are utili...

متن کامل

Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover

Background Cellulolytic enzymes produced by Trichoderma reesei are widely studied for biomass bioconversion, and enzymatic components vary depending on different inducers. In our previous studies, a mixture of glucose and disaccharide (MGD) was developed and used to induce cellulase production. However, the enzymatic profile induced by MGD is still not defined, and further optimization of the e...

متن کامل

A new stoichiometric miniaturization strategy for screening of industrial microbial strains: application to cellulase hyper-producing Trichoderma reesei strains

BACKGROUND During bioprocess development, secondary screening is a key step at the boundary between laboratory and industrial conditions. To ensure an effective high-throughput screening, miniaturized laboratory conditions must mimic industrial conditions, especially for oxygen transfer, feeding capacity and pH stabilization. RESULTS A feeding strategy has been applied to develop a simple scr...

متن کامل

Direct Conversion of Pretreated Straw Cellulose into Citric Acid by Co-cultures of Yarrowia lipolytica SWJ-1b and Immobilized Trichoderma reesei Mycelium

The immobilized cellulase-producing mycelium of Trichoderma reesei was found to produce 2.9 U/ml of cellulase activity within 144 h while 2.1 U/ml of cellulase activity was produced within 120 h by the free mycelium of the same strain. When the immobilized mycelium of T. reesei was co-cultivated with the free cells of Yarrowia lipolytica SWJ-1b in flask, Y. lipolytica SWJ-1b could yield 10.7 g/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013